منابع مشابه
On The Generalized Cyclic Eilenberg-Zilber Theorem
We use the homological perturbation lemma to give an explicit proof of the cyclic Eilenberg-Zilber theorem for cylindrical modules.
متن کاملOn Generalized Cyclic Eilenberg-Zilber Theorem
We use the homological perturbation lemma to give an explicit proof of the cyclic Eilenberg-Zilber theorem for cylindrical modules.
متن کاملExplicit formulas for monomial involutions over finite fields
Francis Castro, Carlos Corrada, Natalia Pacheco∗, Ivelisse Rubio, University of Puerto Rico, Ŕıo Piedras Permutations of finite fields have important applications in cryptography and coding theory. Involutions are permutations that are its own inverse and are of particular interest because the implementation used for coding can also be used for decoding. We present explicit formulas for all the...
متن کاملPermutation statistics on involutions
In this paper we look at polynomials arising from statistics on the classes of involutions, In, and involutions with no fixed points, Jn, in the symmetric group. Our results are motivated by F. Brenti’s conjecture [3] which states that the Eulerian distribution of In is logconcave. Symmetry of the generating functions is shown for the statistics d, maj and the joint distribution (d, maj). We sh...
متن کاملA Statistic on Involutions
We define a statistic, called weight, on involutions and consider two applications in which this statistic arises. Let I (n)denote the set of all involutions on [n](= {1, 2, . . . , n}) and let F(2n)denote the set of all fixed point free involutions on [2n]. For an involution δ, let |δ| denote the number of 2-cycles in δ. Let [n]q = 1+q+· · ·+qn−1 and let (k)q denote the q-binomial coefficient....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti Lincei - Matematica e Applicazioni
سال: 2011
ISSN: 1120-6330
DOI: 10.4171/rlm/598